A physicist explores the history of mathematics among the Babylonians and Egyptians, showing how their scribes in the era from 2000 to 1600 BCE used visualizations of plane geometric figures to invent geometric algebra, even solving problems that we now do by quadratic algebra. Rudman traces the evolution of mathematics from the metric geometric algebra of Babylon and Egypt-which used numeric quantities on diagrams as a means to work out problems-to the nonmetric geometric algebra of Euclid (ca. 300 BCE). From his analysis of Babylonian geometric algebra, the author formulates a "Babylonian Theorem", which he demonstrates was used to derive the Pythagorean Theorem, about a millennium before its purported discovery by Pythagoras.He also concludes that what enabled the Greek mathematicians to surpass their predecessors was the insertion of alphabetic notation onto geometric figures. Such symbolic notation was natural for users of an alphabetic language, but was impossible for the Babylonians and Egyptians, whose writing systems (cuneiform and hieroglyphics, respectively) were not alphabetic. This is a masterful, fascinating, and entertaining book, which will interest both math enthusiasts and students of history.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.